Grammar Hero's Reference Sheet

Copyright © 2020 by Grammar Hero Tutoring. This reference sheet is for personal use only. Unauthorized replication, especially for commercial purposes, is strictly prohibited. All rights reserved. <u>Grammar Hero's YouTube Channel</u>

Simple Interest Formula

I = prt

p = Principal (i.e., loan or investment amount)
I = Interest earned

r = Rate of interest per year in decimal form

t = Time in terms of years

Order of Operations (PEMDAS)

Order of operations refers to the order in which calculations are performed to evaluate an expression. The acronym PEMDAS is useful for remembering it.

Р	Parenthesis
Е	Exponents
Μ	Multiplication and Division (Left to
D	Right)
А	Addition and Subtraction (Left to Right)
S	

Note: Multiplication and division have equal precedence, so their calculations are performed as they appear in the expression from left to right. Likewise, addition and subtraction have equal precedence, so their calculations are performed as they appear from left to right.

 $\mathbf{P} = 2\mathbf{a} + 2\mathbf{b} = 2(\mathbf{a} + \mathbf{b})$

Distance, Rate, and Time Formula

$$d = rt$$

d = distance, r = rate t = time

Rate and time must be in proportional units (e.g., if rate is given in terms of miles per hour, time must be in terms of hours)

Percent Change

$$PC = \frac{New \, Value - Old \, Value}{Old \, Value} \, x \, 100$$

PC = Percent Change If PC is positive, there was an increase. If PC is negative, there was a decrease

Statistics

 $Mean = \frac{Sum of all Data Points}{Number of Data Points}$

Range = Maximum Value – Minimum Value

Mode = The value in the data set that occurs the most often

Median = The value in the middle of the data set

To find the median of a data set, arrange the observations in order from smallest to largest value. If there is an odd number of observations, the median is the middle value. If there is an even number of observations, the median is the average of the two middle values.

Converting Units	
Larger unit \rightarrow smaller unit	Multiply
Smaller unit $ ightarrow$ Larger unit	Divide

Linea	r Units
12 inches (in)	1 foot (ft)
3 feet	1 yard (yd)
36 inches	1 yard
63,360 inches	1 mile (mi)
5,280 feet	1 mile
1,760 yards	1 mile

Capacity										
8 fluid ounces	1 cup									
2 cups	1 pint (pt)									
2 pints	1 quart (qt)									
4 quarts	1 gallon									

Weigh	t and Mass
1 Ton (T)	2,000 pounds
1 pound (lb)	16 ounces (oz)

	Time						
1 day	24 hours						
1 hour (hr)	60 minutes (min)						
1 minute	60 seconds (sec)						
1 year (yr)	365.25 days						
1 week	7 days						
1 year	12 months (mon)						
1440 minutes	1 day						
3600 seconds	1 hour						

	Polygons								
Shape	Number of Sides	Sum of Interior Angles							
Triangle	3	180 degrees							
Quadrilateral	4	360 degrees							
Pentagon	5	540 degrees							
Hexagon	6	720 degrees							
Heptagon or	7	900 degrees							
Septagon									
Octagon	8	1080 degrees							
Any Polygon	n	S = 180(n - 2)							

Multi	olication F	Rules
The product and the quotient of one and any number is	s that nun	imber.
7 x 1 = 7		
$100 \div 1 = 100$		
Zero times any number equals zero.		
0 × 2 = 0		
858 x 0 = 0		
Zero divided by any nonzero number is zero.		
0 ÷ 3 = 0		
Dividing a number by zero is undefined.		
$\frac{5}{0} = undefined$		
When multiplying or dividing with positives and negatives	ves, use th	the signs charts.
Multiplication,	/Division	n Sign Chart
+	+	+
+	-	-
-	+	_
-	-	+

Quadrilate	rals
Square	Perimeter: P = 4s
	Area: $A = s^2$
+ $+$ s	
	Note: To find the perimeter of any guadrilateral, you
	simply add up all of its sides.
Rectangle	Perimeter: $P = 2I + 2w$
	Area: A = lw
+ + w	
	Note: To find the perimeter of any quadrilateral you
I	simply add up all of its sides.
Parallelogram	Perimeter: P = 2a + 2b
	Area: A = bh
a/h	
	Note: To find the perimeter of any guadrilatoral you
<u>b</u>	simply add up all of its sides.
Trapazoid	
	Perimeter: $P = a + b_1 + c + b_2$
b_2	Area: $A = \frac{1}{2}(b_1 + b_2) \cdot h$
	2
	Note: To find the perimeter of any quadrilateral, you
b_1	simply add up all of its sides.

Formulas for V	'olume (V) and Surface Area (SA)
Cube	$V = a^3$
	SA = 6a ²
Rectangular Solid	V = I x w x h
h I W	$SA = 2(I \times w) + 2(w \times h) + 2(h \times I)$ I = length w = width h = height
Cylinder	$V = \pi r^2 h$
sphere	$V = hr^{2}h$ $SA = 2\pi rh + 2\pi r^{2}$ $V = \frac{4}{2}\pi r^{3}$
r	$SA = 4\pi r^2$
Rectangular Pyramid	$V = \frac{1}{2}ahh$
a	Note: ab is the area of the base of the pyramid
Cone	$V = \frac{1}{3} \pi r^2 h$

Basic Probability
1. For any event A: $0 \le P(A) \le 1$
2. P(impossible event) = 0.
3. P(sure event) = 1.
4. $P(A) = \frac{Desired outcome}{T + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
Total number of outcomes
5. $P(not A) = 1 - P(A)$
6. P(A and B) = P(A) x P(B) Independent (Replacement) vs. Dependent Events (No Replacement)
7. P(A or B) = P(A) + P(B) (Exclusive Events)
8. P(A or B) = P(A) + P(B) – P(A and B) (Non-Exclusive Events)

			Pri	me N	lumb	ers											Ti	mes	s Ta	ble						
1	2	3	4	5	6	7	8	9	10			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
									-		1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
11	12	13	14	15	16	1/	18	19	20		2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
21	22	23	24	25	26	27	28	29	30		3	3	0	9 12	12	15	18	21	24	27	30	33	36	39	42	45
31	32	33	34	35	36	37	38	39	40		5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
											6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
41	42	43	44	45	46	47	48	49	50		7	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105
51	52	53	54	55	56	57	58	59	60		8	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120
			10000			1					9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135
61	62	63	64	65	66	67	68	69	70		10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
71	72	73	74	75	76	77	78	79	80		11	11	22	33	44	55	66	77	88	99	110	121	132	143	154	165
	82		0.4		96	97			00		13	13	24	39	40 52	65	72	91	104	117	130	143	156	169	182	195
01		05	04	05	00	07	00	07	20		14	14	28	42	56	70	84	98	112	126	140	154	168	182	196	210
91	92	93	94	95	96	97	98	99	100		15	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225
									· · · ·																	
										Perfect Squ	Jare	25														
$1^2 =$	1				62	² = 3	6			1	1 ²	= 1	21							16 ²	=2	56				
	-				-) – J	0			-	<u> </u>									_ 2	-2					
22 =	4				1	= 4	9			1	22	= 1	.44	•					1	./2:	= 2	89				
3 ² =	9				82	² = 6	4			1	3 ² :	= 1	69						1	.8 ² :	= 3	24				
$4^2 = 16$ $9^2 = 81$							1	.4 ²	= 1	96							19 ²	= 3	61							
5 ² =	25				1	$0^{2} = -$	100				152	= 2	25						2	0 ² :	= 4	იი				
5 -	25				Ξ.	U – .	100			-		- 2							2	.0		00				
1																										

Laws of Exponents		
Zero-Exponent Rule		
	$3^0 = 1$	
a ⁰ = 1	$(5x^{3}y^{4})^{0} = 1$	
Anything raised to the zero power is 1.		
Power Rule	(
(m)n mn	(A) = A	
(a''')'' = a'''''	$(2x^{2}y^{2})^{2} = 2^{2}x^{2}y^{2} = 8x^{2}y^{2}$	
To raise a power to a power you need to multiply the		
exponents.		
Negative Exponent Rule		
1	₂ 1 1	
$a^{-n} = \frac{1}{n}$	$2^{-} = \frac{1}{5^{2}} = \frac{1}{25}$	
a"	$A_{xx}^{-2} - 4$	
	$\frac{1}{x^2}$	
Negative exponents in the numerator get moved to	$\frac{x^{-3}}{x^{-3}} = \frac{y^{7}}{x^{-3}}$	
the denominator and become positive exponents.	y ⁻⁷ x ³	
Negative exponents in the denominator get moved to		
the numerator and become positive exponents.		
Product Rule		
$a^m \cdot a^n = a^{m+n}$	56	
a a - a	$X \cdot X = X$	
To multiply two exponents with the same base you	$\mathbf{y}^{*} \cdot \mathbf{y}^{*} = \mathbf{y}^{**}$	
keep the base and add the powers		
Quotient Rule	5	
$\frac{a^m}{a} - a^{m-n}$	$\frac{x^2}{3} = x^2$	
a ⁿ a	x ⁷ 	
	$\frac{y}{y^9} = \frac{1}{y^5}$	
To divide two exponents with the same base, you keep	$x^{3}v^{2}$ x	
the base and subtract the powers.	$\frac{z}{x^2y^5} = \frac{z}{y^3}$	

Fractions		
Adding and Subtracting Fractions	$a c (a \cdot d) + (c \cdot b)$	
	$\frac{1}{b} + \frac{1}{d} = \frac{1}{b \cdot d}$	
Multiplying Fractions	$a c a \cdot c$	
(Multiply straight across)	\overline{b} \overline{d} $\overline{b} \cdot \overline{d}$	
Dividing Fractions	a c a d	
(Keep, Change, Flip)	$\overline{b} \div \overline{d} = \overline{b \cdot c}$	
Converting Mixed Numbers to Improper Fractions		
	$A\frac{b}{c} = \frac{(A \cdot c) + b}{c}$	

Step 1: A problem involving combined rates or work can be solved using the formula:

Combined Rates & Work

$$\frac{\mathrm{T}}{\mathrm{A}} + \frac{\mathrm{T}}{\mathrm{B}} = 1$$

T = time working together A = the time it takes for one person or thing to complete the task by themselves B = the time it takes for one person or thing to complete the task by themselves

Step 2: Adjust the formula in accordance with the problem and solve

Example: Walter and Helen are asked to paint a house. Walter can paint the house by himself in 12 hours and Helen can paint the house by herself in 16 hours. How long would it take to paint the house if they worked together?

Step 1: A problem involving work can be solved using the formula:

$$\frac{T}{A} + \frac{T}{B} = 1$$

Step 2: Solve the equation created in the first step. This can be done by first multiplying the entire problem by the common denominator and then solving the resulting equation. In this case, the least common denominator is 48.

$$48\left(\frac{T}{12} + \frac{T}{16} = 1\right)$$
$$4T + 3T = 48$$
$$7T = 48$$
$$T = \frac{48}{7}$$

 $\frac{T}{12} + \frac{T}{16} = 1$

Step 3: Answer the question asked of you in the problem and be sure to include units with your answer.

Together
$$=\frac{48}{7} \approx 6.9$$
 hours

Angle Types & Special Angle Pairs		
Acute Angle: An angle whose measure is less than 90 degrees.		
Right angle: An angle whose measure is 90 degrees.		
Obtuse angle: An angle whose measure is bigger than 90 degrees but less than 180 degrees.		
Straight angle: An angle whose measure is 180 degrees. Thus, a straight angle look like a straight line.	<	
Complementary angles: Two angles that have a sum of 90 degrees. $\angle 1 + \angle 2 = 90^{\circ}$	60° 30°	
Supplementary angles: Two angles that have a sum of 180 degrees. $\angle 1 + \angle 2 = 180^{\circ}$	130° 50°	

FACTORING GUIDE

I. Check for GCF

II. Count the number of terms

Two Terms 1. Difference of 2 Squares

 $A^2 - B^2 = (A - B)(A + B)$ * Note: $A^2 + B^2$ is prime and does **NOT** factor

Example: Since A = 2x and B = 5y $4x^2 - 25y^2 = (2x - 5y)(2x + 5y)$

Three Terms

1. Leading Coefficient is 1

a) x² + x - 42 = (x - 6)(x + 7)
(find 2 numbers that multiply out to -42 and add up to 1)
b) x² - 9x + 14

= (x - 7) (x - 2)
(find 2 numbers that multiply to 14 and combine to -9)

2. Sum or Difference of Cubes

$$A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$$

 $A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$

Examples: $x^3 - 8$ here A = x and B = 2 So $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$

 $27y^3 + 64z^3$ here A = 3y and B = 4z so $27y^3 + 64z^3 = (3y + 4z)(9y^2 - 12yz + 16z^2)$

2. Leading Coefficient is NOT 1
a) Check to see if it is a perfect square trinomial
(use the sum or difference of the square root of the first and last terms) 4x² - 20xy + 25y² = (2x - 5y)(2x - 5y)

$$=(2x-5y)^{2}$$

b) Use trial and error to factor the form $Ax^2 + Bx + C$ (If A and C are small or prime numbers, try different combinations to get the outer and inner terms to equal B.)

$$2x^{2} - 5x - 7 = (2x - 7)(x + 1) not (2x + 1)(x - 7) not (2x - 1)(x + 7)$$

(outers = 2x, inners = -7x, their sum is -5x) *Note: If $B^2 - 4AC$ is not a perfect square, the trinomial is prime.

c) Use the AC (Australian) Method

use this pair -

- 1. Find the product of A times C and list pairs of factors Select the pair of factors whose sum is B.
- (If none match, then the trinomial is prime and cannot be factored.)
- Rewrite the trinomial as four terms with the pair of factors as coefficients of the middle term.

 $4x^2 - 13x + 10$ AC = 40 B = -13-2 -20 sum to -22-4 -10 sum to -14

$$\sim$$
 -5 - 8 sum to -13

3. See factoring four terms Two-by-Two Ex.1 below.

Four Terms
Examples:Factor by Grouping
1. Two by Two:1) $4x^2 - 8x - 5x + 10$
= 4x(x-2) - 5(x-2) = (x-2)(4x-5)2) $x^3 - 3x^2 + 5x - 15$
 $= x^2(x-3) + 5(x-3) = (x-3)(x^2+5)$ 2. Three by One: $x^2 - 6x + 9 - y^2 = (x-3)^2 - y^2 = (x-3-y)(x-3+y)$

Factorials		
n! = n x (n−1) x (n−2) x x 1		
0! = 1 1! = 1 $2! = 2 \times 1 = 2$ $3! = 3 \times 2 \times 1 = 6$ $4! = 4 \times 3 \times 2 \times 1 = 24$ $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$ $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$ $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5,040$ $\frac{9!}{7!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}$ $9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$	$\frac{15!}{12! 3!} = \frac{15 \cdot 14 \cdot 13 \cdot 12!}{12! 3!}$ $= \frac{15 \cdot 14 \cdot 13 \cdot 12!}{12! 3!}$ $= \frac{15 \cdot 14 \cdot 13}{12! 3!}$ $= \frac{15 \cdot 14 \cdot 13}{3!}$ $= \frac{15 \cdot 14 \cdot 13}{3!}$ $= \frac{5}{3 \cdot 2 \cdot 1}$ $= 5 \cdot 7 \cdot 13$	
$= \frac{7 \times \cancel{0} \times \cancel{3} \times \cancel{4} \times \cancel{3} \times \cancel{2} \times \cancel{1}}{= 9 \times 8}$ $= 72 \checkmark$	= 455 🗸	

Prime Numbers & Divisibility Rules			
A number is divisible by	Divisible	Not Divisible	
2 – if the last digit is even (0, 2, 4, 6, or 8).	3,97 <mark>8</mark>	4,97 <mark>5</mark>	
3 – if the sum of the digits is divisible by 3.	315 = 3 + 1 + 5 = 9	139 = 1 + 3 + 9 = 13	
4 – if the last two digits are divisible by 4.	8,5 <mark>12</mark>	7,5 <mark>11</mark>	
5 – if the last digit is 0 or 5.	14,97 <mark>5</mark>	10,99 <mark>9</mark>	
6 – if the number is divisible by both 2 and 3.	48	20	
9 – if the sum of the digits is divisible by 9.	711 = 7 + 1 + 1 = 9	93 = 9 + 3 = 12	
10 – if the last digit is 0.	15,99 <mark>0</mark>	10,53 <mark>6</mark>	

Since a number is considered prime is if it is only divisible by one and itself, you can use these divisibility rules to quickly determine if a number is NOT prime. In other words, if a number is divisible by 2, 3, 4, 5, 6, 9, or 10, then it cannot be prime. For example:

- 1. 10,995 this number is not prime because its last digit is 5, which means it is divisible by 5 (i.e., by something other than one and itself).
- 2. 988 this number is not prime because its last digit is 8, an even number, which means it is divisible by 2 (i.e., by something other than one and itself).
- 3. 333 -this number is not prime because the sum of its digits (3 + 3 + 3 = 9) is divisible by 3, which means it is divisible by 3 (i.e., by something other than one and itself).

Like terms have the <u>same letter variables</u> and are <u>raised to same powers</u>. Like terms can be combined into a single term.

Like Terms	Not Like Terms
2x and -5x	6x and 6y
2a ² and -5a ²	y and 6y ²
-2xy ² and 8xy ²	X and 7

Adding and Subtracting Polynomials

When adding polynomials, you simply combine like terms. For example:

$$(x^{2}-x+5) + (6x^{2}+2x-10)$$

$$\frac{x^{2}-x+5}{+6x^{2}+2x-10}$$

$$7x^{2}+x-5$$

When **subtracting polynomials**, you rewrite subtraction as addition by distributing the negative sign to every term in the second polynomial and then combine **like terms**. For example:

$$(3x^{2} - 8x + 7) - (2x^{2} - 6x + 12)$$

= $(3x^{2} - 8x + 7) + (-2x^{2} + 6x - 12)$
 $3x^{2} - 8x + 7$
 $+ -2x^{2} + 6x - 12$
 $x^{2} - 2x - 5$

5 sizes × 8 colors × 25 logos = 1,000 combinations of shirts

Converting Celsius (C) to Fahrenheit (F) and Fahrenheit (F) to Celsius (C)

For the ASVAB, you generally do not have to memorize these formulas. Rather, you must understand that, algebraically, you can use either of these formulas to convert Celsius to Fahrenheit as well as Fahrenheit to Celsius.

$$F = \frac{9}{5}C + 32$$
$$C = \frac{5}{9}(F - 32)$$

For example: Convert 30 degrees Celsius to Fahrenheit using both formulas.

Using the First Formula	Using the Second Formula
$F = \frac{9}{5}C + 32, C = 30$	$C = \frac{5}{9}(F - 32), \qquad C = 30$
$F = \frac{9}{5}(30) + 32$	$30 = \frac{5}{9}(F - 32)$
$F = \frac{9}{5} \cdot \frac{30}{1} + 32$	$\frac{9}{5} \cdot 30 = \frac{5}{9} \cdot \frac{9}{5}(F - 32)$
$F = \frac{270}{5} + 32$	$\frac{9}{5} \cdot \frac{30}{1} = \frac{5}{9} \times \frac{9}{5} (F - 32)$
F = 54 + 32	270 - E - 22
F = 86	$\frac{-1}{5} - r - 32$
	54 = F - 32 54 + 32 = F
	F = 86